Suppression of p75NTR does not promote regeneration of injured spinal cord in mice.
نویسندگان
چکیده
The neurotrophin receptor p75NTR is the coreceptor for Nogo receptor, mediating growth cone collapse in vitro by MAG, myelin oligodendrocyte glycoprotein (Omgp), and Nogo. Whether p75NTR plays any role in the failure of nerve regeneration in vivo is not known. Immunohistochemical data showed that p75NTR was expressed in only a very small subset of ascending sensory axons but not in any corticospinal axons in the dorsal column of either normal or injured spinal cord. Using p75NTR-deficient mice, we showed that the depletion of the functional p75NTR did not promote the regeneration of the descending corticospinal tract and ascending sensory neurons in the spinal cord 2 weeks after spinal cord injury. Local administration of p75NTR-Fc fusion molecule, the dominant-negative receptor to block the function of neurite outgrowth inhibitors, did not improve regeneration of ascending sensory neurons in the injured spinal cord. Our results suggest that p75NTR may not be a critical molecule mediating the function of myelin-associated inhibitory factors in vivo.
منابع مشابه
Why does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملMembrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration
Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...
متن کاملMembrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration
Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...
متن کاملRho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system
Growth inhibitory proteins in the central nervous system (CNS) block axon growth and regeneration by signaling to Rho, an intracellular GTPase. It is not known how CNS trauma affects the expression and activation of RhoA. Here we detect GTP-bound RhoA in spinal cord homogenates and report that spinal cord injury (SCI) in both rats and mice activates RhoA over 10-fold in the absence of changes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2004